
 

Automatic Detection of the Optimal Acceptance 
Threshold in a Face Verification System  

 
Raquel Montes Diez, Cristina Conde, and Enrique Cabello 

Universidad Rey Juan Carlos (ESCET),  
C/Tulipán s/n, 

28933 Móstoles, Spain 
r.montes@escet.urjc.es 

http://frav.escet.urjc.es 

Abstract. We present a face verification system with an acceptance threshold 
automatically computed. The user is allowed to provide the rate between the 
costs assumed for a false acceptance and false rejection. This rate between costs 
can be intuitively known by the system responsible and are a starting point to 
fulfil user security requirements. With this user-friendly data, an algorithm 
based on screening techniques to compute the acceptance threshold is presented 
in this paper. This algorithm is applied to an original and competitive face 
verification system based on principal component analysis and two classifiers 
(neural network radial basis function and support vector machine). 
Experimental results with a 100 people face database are shown. This method 
can be also applied into other biometric applications in which this threshold 
should be calculated. 

1   Introduction 

Biometrics technology has passed in few years from research labs to commercial 
implementations. Media coverage has brought face recognition systems used in high 
profile locations such as airports, to the attention of the public. Unfortunately, the 
recognition of the human face is a very complex problem involving several 
processing steps that have not yet been completely resolved. Although technology is 
evolving and obtaining better results, expectations are very high and in most cases, 
difficult to achieve. As a consequence, several systems tested in real conditions have 
been rejected.  

However, less attention has been paid to control access systems. In these systems, 
the effect of the environment is more controlled, allowing the technology to obtain 
better and more reliable results. Such systems could fulfil the performance criteria 
demanded by potential clients. 

The experiment presented in this paper focused on testing the performance of a 
control access system based on face verification technology. In control access 
environments, it is possible to take advantage of a set of specific characteristics. 
Usually, the subject is in front of the camera, only one subject appears, the size of the 
face is more or less constant and the subject is usually collaborative. It is therefore 
possible to obtain an initial set of images and to define a personal identification 
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number entered or placed in a smart card. Our system uses these advantages and 
proposes a control access system designed to work in such situations. 

In recent years, two main approaches to face processing problem using only image 
information have appeared. The first approach is Principal Components Analysis 
(PCA) and related methods such as Fisherfaces [1] [2] [3] [4]. These methods 
consider only the global information of the face. Likewise, methods based on Local 
Feature Analysis (LFA) [5] [6], similar to PCA, consider different kernel functions 
which concentrate local features, such as eyes, mouth and nose. In this case, selection 
of facial features and kernels is an open issue. The second approach, based on Elastic 
Bunch Graph Matching (EBGM) [7] and similar methods, use wavelet transformation 
to obtain local description of the face and a graph to obtain a global face description. 
In the scientific literature several results with different research algorithms have been 
published. For example, following the success of FERET tests [8] [9] [10], a recent 
and extensive test of ten commercial products has been performed (FRVT 2002) [11].  

A continuing problem in the design of a facial verification system is the decision of 
the optimum acceptance threshold. The acceptance threshold is the value that 
determines whether a verification is acceptance or rejection. For example, in the SVM 
classifier, the threshold is 0w = . However our experience shows that choosing a 
different value could result in a better performance of the system, this is, in a smaller 
number of false acceptance and false rejection. We understand that the acceptance 
threshold should then be chosen to minimize the error rate.  

Furthermore, it is important to note that in a facial verification system there are two 
different error types; false acceptance and a false rejection, each with, possibly, 
different associated risk. For instance, in high security environments it is highly 
recommended to minimize the false acceptance rate despite the fact that the false 
rejection rate could be increased (subject has to key maybe twice the code). Likewise, 
for the access to a non-critical place, a higher false acceptance rate could be 
acceptable and the false rejection rate could be lowered (impostors could be accepted 
but to gain access, the code only has to be typed once). In order to take this into 
account, we propose a classification system based on costs for false acceptance and 
false rejection. The exact calculation of both costs (acceptance and rejection) could be 
difficult to found, but the rate between this costs is easier to fix. This is the input in 
the algorithm proposed. 

In this paper we present an innovative algorithm to calculate this optimal 
acceptance threshold by using economic screening techniques based on different costs 
for different error type.  

2   Experimental Set Up Description 

The set up has been designed and built to test the performance of the algorithm. 
Figure 1 shows the image acquisition set up, consisting on two diffuse light sources 
placed on both sides of a video camera. 

In order to minimize distortions originated by changes in the lens focal length and 
the camera-subject distance, it is advisable to fix both in any operation environment. 
These requirements are easily met in any exploitation site. In our experiments a 
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database of 100 individuals is considered. Subjects were forced to change their pose 
between the acquisition of two consecutive images. 
 

 
Fig. 1. Experimental set up showing diffuse lighting and the CCD camera. 

 
Fig. 2. Examples of the Face Database  

An image size is 320 x 240 pixels with face covering great part of the image (as 
shown in figure 2). Our face location system cropped the face to a window of 
130x140 pixels. Eight images per subject were used for computing PCA matrix and 
training all classifiers. For tests sets, four different images per subject were 
considered.  

3 Face Verification System 

Face verification can be split into four processes: Face location, PCA computation, 
classifier design and automatic optimal threshold calculation. The first three parts 
require a training or parameter computation phase and once all parameters have been 
adjusted and classifiers trained, a normal operation phase. This fourth process will be 
detailed in chapter 4.  

3.1   Face Location 

In this step, the image is the input and the desired output is a window containing only 
the face in a standard size. The background is then eliminated to obtain a rough initial 
estimate of face location in the image. Subsequently, convolution with a face template 
is applied to obtain a more reliable and precise position of the face. Each subject in 
the database has their own template. The template is part of the  subject’s face, so 
convolution is more reliable where template coincides with the face in image. Initial 
tests suggest that one template per subject achieves better performance that one 
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template for the whole database. When the convolution reaches the maximum over 
the images, a window containing the face is extracted. The final dimension was 
reduced to 130 x 140 pixels. In this step all images were also converted from colour to 
a grey scale. 

3.2   Principal Components Analysis Computation 

Principal Components Analysis is the de facto standard in face verification systems. 
In the training phase, the problem can be resolved computing the transformation 
matrix using a number of eigenvectors that retains almost 100% of the initial 
variance. Only one PCA matrix is computed with the training face images set. In our 
experiment eight images per subject are considered in order to compute the PCA 
matrix, in our tests 150 eigenvalues were considered. 

3.3 Verification 

Two classifiers have been considered: Artificial Neural Networks: Radial Basis 
Function (RBF) and Support Vector Machine (SVM). In all cases, training is 
performed with eight images per subject (the same ones used for PCA computation). 
Tests were carried out using four images per subject. Training and test sets did not 
overlap. If the output value for SVM and RBF is large this means that confidence is 
high. Thus positive verification has been considered when output value is greater than 
the acceptance threshold. This acceptance threshold has to be set to obtain the 
optimum value that minimizes false acceptance rate and false rejection rate, and 
maximizes the correct rate. The magnitude used as threshold is different for each 
classifier, in case of RBF, output neuron value and SVM: function decision value 

RBF has been used as an artificial neural network classifier for face verification. 
The initial information is a subject image and personal identification number (PIN) 
code. The PIN code indicates which output neuron is considered. In our experiment, 
Gaussian functions considered are symmetric and centred in the middle of each face 
subject cluster. 

Support Vector Machine offers excellent results in 2-class problems. This classifier 
could be easily used in verification problems (recognizing one subject against rest). In 
our experiment a linear kernel has been considered.  

4 Optimal Acceptance Threshold Calculation 

In order to optimize the acceptance threshold, we perform a Bayesian screening 
approach [12] based on two variables, namely  

• A binary performance variable T , identifying whether one image has been 
taken (T ) or not (T1= 0= ) of a given person.  

• A screening variable X defining the output of a known classifier, for instance, 
SVM or RFB.   
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Since the screening variable X is not perfectly correlated with the performance 
variable, decisions made by using the screen are prone to error (false acceptance and 
false rejection). 

4.1   Economic Design of the Screen 

Suppose that our screening variable X  is continuous and of the type the larger the 
better. That is, a large value of X  tends to indicate a matching image or genuine 
( ), whereas a small value of1T = X  is a sign of an impostor (T 0= ).  

Under such an assumption, a single-stage screen based on the screening variable, 
would naturally contain a cut-off point , so that if w X  is above , we accept the 
person as genuine, and if 

w
X  is below , we do not. Observe that if w X w=  there is 

an arbitrary choice between accepting and rejecting the person. From now on and in 
order to be consistent, we shall accept items for which X w= , so that the screen is 
precisely defined as 

• if X w≥ , the person is accepted.  
• if X w<  the person is rejected. 

4.2   Optimal Acceptance Threshold 

We adopt an economic objective in which the value of the threshold  is determined 
in order to minimize the expected total cost of the procedure. Let and  be the cost 
paid for a false acceptation and a false rejection by the system, respectively. The 
expected total cost of an image being classified based on the output of a classifier 
system such as SVM or RBF, may be expressed as a function of , so that 

w
ac

w

rc

( )  (wrongly reject image) (wrongly accept image)r aETC w c P c P= + .   

In formal notation,  

( )  ( 1, ) ( 0, )r aETC w c P T X w c P T X w= = < + = ≥ ,   

which, assuming X  is continuous, becomes 

( )( )  ( 1 | ) ( ) 1 1| ( ) ,
w

r a
w

ETC w c P T X w f x dx c P T X w f x dx
∞

−∞

= = = + − = =  ∫ ∫  
 

where is the marginal density function of the screening variable( )f x X . 
To minimize  this expected total cost for continuous X , we differentiate this 

expression with respect to , and equate to zero, w

( )'( )  ( 1 | ) ( ) 1 1| ( ).r aETC w c P T X w f w c P T X w f w= = = − − = =     

Defining  

,a

a r

c
k

c c
=

+
 

 



Automatic Detection of the Optimal Acceptance Threshold           75 

it is then straight forward to show that the equation 

( 1 |  )P T X w k,= = =  (1) 

gives the optimal value  for the acceptance threshold. Note also that, by defining 
the rate , there is no need to state the value of the costs  and . The user may 
just give the rate , which should be easier that fixing the costs. 

w
k ac rc

k
In order to identify the optimal limit for the first stage of the screen we need to 

solve equation (1) and, hence, to evaluate expressions of the form . 
It is necessary, therefore, to take into account the structure defining the relationship 
between

( 1|  xP T X= = )

X and . T

4.3   The Model 

The structure for ( , )X T  is usually expressed as a parametric model with unknown 
parametersθ . We denote the joint probability model for ( , )X T givenθ  by ( , | )f x t θ  
and try to obtain the unconditional model  by using the available information 
about the parameters. There are two main approaches for this purpose: the estimative 
or classical approach and the predictive or Bayesian approach. Here we shall adopt a 
Bayesian approach, as it provides a natural but also rigorous theory for combining 
prior and experimental information as well as for making inference. 

( , )f x t

We now propose the factorisation of the joint distribution of ( , )X T  through the 
conditional model for the continuous screening variable given the value of the 
performance variable. We also specify the distribution of X for genuine and impostor, 
separately, so that 

2 2
1 1 0 0( , | ) ( | 1, , ) ( 1 | ) ( | 0, , ) ( 0 | ),f x t f x T P T f x T P Tµ σ ρ µ σ ρ= = = + = =θ   

where 2 2
1 1 0 0( , , , )µ σ µ σ ρ=θ  and with 2

1 1( , )µ σ , ( , 2
0 0 )µ σ  and ρ independent.  

Remember that T  is a binary performance variable, taking values T  if a 
photograph match subject identity and T

1=
0= , otherwise. Its marginal distribution 

may, therefore, be defined by 

( 1) ,
( 0) 1

P T
P T ,

ρ
ρ

= =
= = −

 
 

where ρ  is the probability of success and hence, satisfies 0 1ρ≤ ≤ . 
Let us then assume that variable X follows a normal distribution with parameters 

2
1 1( , )µ σ  and ( , 2

0 0 )µ σ in each group, this is, 

2| ( ,i iX T i N ),µ σ= ∼   

for , respectively. 0.1i =
Here we are interested in the conditional probability of an item with screening 

value X x=  being successful. By using Bayes theorem, this is, 
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0,1

(  | 1,  ) ( 1 | )( 1 |  ,  )
(  | ,  ) ( | )

i

f x T data P T dataP T X x data
f x T i data P T i data

=

= =
= = =

= =∑
.  

(2) 

The conditional posterior predictive densities  for  and the 
posterior predictive probability of a success  are both developed  by 
using the Bayesian approach, both assuming non—informative prior distribution for 
the unknown parameters, see, for instance [12].  

( | ,  )f x T i data= 0.1i =
( 1 | )T dataP =

The predictive posteriors of |X T i= , are found to be Student-t distributions with 
density functions, 

 

1 ( 1)2 2( )1( | ,  ) 1
( 2)

in

i

i ii

x x
f x T i data

n pp

− −
 −

= ∝ + − 

 

where  and where 1 2(1 )i ip n−= + is ix , is and are the sample mean, sample standard 
deviation and sample size for each one of the two different groups, 

in
0,1i = , this is for 

genuine and impostors.  
In developing the posterior probability of an image matching subject identity 

, it is of interest to recognize that the number of successes and the 
number of failures have been chosen in advance, and that no additional information 
about the probability of success is therefore provided by the data. Thus we  set a non 
informative prior for the parameter

( 1 |P T data= ) 1n

0n

ρ which results in equivalent posterior predictive 
probabilities for genuine and impostors, this is 

1( 1 | )
2

P T data .= =  
 

Once all the elements in expression (2) have been developed, optimal values of the 
acceptance threshold are easily calculated by employing numerical techniques. w

5 Results and Discussion 

The results are presented in two stages. Firstly we shall present the optimal 
acceptance threshold calculation for different acceptance and rejection costs rates, this 
is for different values of the constant  k . Secondly, we shall show the variation of 
FRR and FAR in each cost case.  

Exploratory analysis of the data shows that the screening variable X  is continuous 
and of the type the larger the better, as required by the our screening set-up, with 
sufficient statistics given in Table 1. 
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Table 1. Sufficient statistics for genuine and impostor for the SVM and RBF classifier. 

SVM RBF  
ix  is  in  ix  is  in  

1T =  4.009 1.735 400 0.828 0.340 400 
0T =  0.306 0.277 39600 -1.696 0.455 39600 

 
In order to see how the acceptance threshold changes with the different values 

for  and , we compute optimal values of  corresponding to different values of 
the constant , , for the two different classifiers, SVM and RBF. The results 
are shown in the following graphs,  

w
ac rc

k
w

0 k≤ ≤1

 

  
       Fig. 3. SVM Optimal threshold     Fig. 4. RBF Optimal threshold 

Recall that , we now consider three specific values for the constant 
 which may be identified with three different security levels of access control or 

situations, in which our face verification system may be applied.  

/( )a a rk c c c= +
k

A low security level system: In our set-up, this situation might be identify by using 
an acceptance cost much smaller than the rejection cost. By assuming , for 
instance, we obtain  In this situation the system is will not be very 
restrictive and the FRR is forced to be very low. This security level could be applied 
in a supervised parking access control, when it is important to avoid a traffic jam. 

0.1a rc = c
0.090.k =

A medium security level system is represented with equivalent rejection and 
acceptance cost, this is the case where we assume that a false acceptance is as 
dangerous (or expensive) as a false rejection. Note than then 2k = . 

A high level security system: This could be represented by using an acceptance 
cost much more expensive, than the cost of rejection. For instance if we assume that  

, the value of turns to be 10ac = rc k 0.909k = . In this case the FAR is nearly zero,  
for the RBF classifier, and null for the SVM classifier (even thought that FRR could 
be high). This system is highly restrictive and it could be applied to access control 
where we are interested in avoiding impostors to enter. 

Table 2 shows the optimum acceptance threshold in three different cases: low, 
medium and high security level. Note that FAR decreases as security level 
(acceptance cost ) increases. 
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Table 2. Optimum Acceptance Threshold variation with FAR and FRR in each case. 

SVM RBF 
ac  - c  
rate 

r k  w  FRR(%) FAR(%) w  FRR(%) FAR(%) 
0.1ac = rc

rc

100

 0.091 - 0.717 1 0.17 1.081 2.00 2.45 

a rc c=  0.500 - 0.366 1 0.01 1.527 7.21 0.32 
10ac =  0.909 0.001 3.50 0 1.888 11.72 0.31 

 
Figure 3 shows the FRR and FAR for a wide variation of optimal acceptance 

thresholds. These results are presented in a conventional DET curve [13], which plots 
on a log-deviate scale the False Rejection Rate (FRR) as a function of the False 
Acceptance Rate (FAR). We present a DET curve of each classifier: SVM and RBF. 
The point of the DET curve corresponding to FNR = FPR is called Equal Error Rate 
(EER). While EER may not be useful in real world applications, it could be helpful in 
comparing the performance of systems or algorithms.  
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Fig. 5. DET curve 

In this figure we can see how the SVM classifier is more reliable than RBF. If we 
consider the EER as a measure of the system performance the superiority of SVM is 
clear: EER(SVM)=0.99 and EER(RBF)=2.43. 

6 Conclusion 

In this paper we have presented a reliable face verification system with an innovate 
module; automatic evaluation of the optimal acceptance threshold using Bayesian 
screening techniques. This assure that the security level is under control while 
keeping a minimum error levels. 

Using the algorithm proposed, the user is allow to provide the cost that is assumed 
to pay for false acceptance or false rejection. This allows the tailoring of our system 
to user security requirements. Furthermore, the user may indicate the value of the 
level of security required in an intuitive way, and parameter computation is hidden to 
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the user. The system proposed can work under several security conditions that can be 
changed by the user. 

The method proposed is valid for all face verification systems, independently of 
the classifier. Its integration in an existing system has been performed and results 
show that integration of the algorithm is not expensive. 

It is of interest to note that a face verification system may be adapted to the 
environment and the specific conditions of the future application in order to obtain 
satisfactory results. 
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