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Abstract. Spatial dimension reduction methods called Two Dimen-
sional PCA and Two Dimensional LDA have recently been presented.
These variations of traditional PCA and LDA consider images as 2D ma-
trices instead of 1D vectors. The robustness to pose variations of these
advances at verification tasks, using SVM as classification algorithm, is
here shown.

The new methods endowed with a classification strategy of SVMs,
seriously improve, specially for pose variations, the results achieved by
the traditional classification of PCA and SVM.

1 Introduction

Some of the fields where biometrics play a relevant role are not only the im-
provement of security but also the development of smart environments where
individuals are able to interact with computers in a human related way [1].
Dimensionality reduction is an important and necessary preprocessing of multi-
dimensional data, as face images. Recent tests to measure the progress recently
made towards face recognition show that accuracy on frontal face with indoor
lighting goes beyond 90%, which is promising for early stages of recognition tasks
[2]. On the other hand, face recognition among different pose or illumination is
far from acceptable. Robustness to this changes in facial images is searched in
many ways.

Analysis of the effects of pose [3] and illumination [4,5] variations over each
face have been studied, searching for invariant characteristics or analyzing the
perturbations introduced in the data. A normalization task is aimed by detecting
characteristic points and measuring distances [6]. Three dimensional models of
facial images are obtained through laser scanners [7], increasing the cost and the
complexity of the problem. From our point of view, these methods improve the
performance of the classification but traditional methods avoid dealing with an
important problem, the spatial structure of the images.

Face recognition is different from classical pattern recognition, since there are
many individual classes and only a few images per class. Dimension reduction
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methods commonly used, like Principal Component Analysis (PCA) or Linear
Discriminant Analysis (LDA), and Gabor Filters [8], as well as other improved
variations, like Independent Component Analysis (ICA) [9] and Kernel Principal
Component Analysis (KPCA) [10], obtain a feature set for each image. Classi-
cal methods use vectorized representations of the images containing the faces
instead of working with data in matrix representation. The main drawbacks of
the classical vectorized projection methods is that it is easy to be subjected to
gross variations and thus, high sensitive to any changes in pose, illumination etc.

New advances on feature extraction methods called Two-Dimensional Prin-
cipal Component Analysis [11,12] and Two-Dimensional Linear Discriminant
Analysis [13,14] have shortly been presented, and preliminar experiments and
junctions of these new methods with SVM are the focus of this work. Experi-
ments are performed over a wide set of subjects, joined in a facial database of
images which allow the measurement of the advances of the recognition task to
pose variations, specially to rotated faces.

2 Feature Extraction

Traditional feature extraction techniques require that 2D face images are vector-
ized into a 1D row vector to then perform the dimension reduction [8,9,10]. The
resulting image vectors belong to a high-dimensional image vector space where
covariance matrices are evaluated with a high associated computational cost.

Recently, a Two-Dimensional PCA method (2DPCA) and Two-Dimensional
LDA (2DLDA) have been developed for bidimensional data feature extraction.
Both methods are based on 2D matrices rather than 1D vectors, preserving
spatial information.

2.1 Principal Component Analysis

Given a set of images I1, I2, . . . , IN of height h and width w, PCA considers
the images as 1D vectors in a h · w dimensional space. The facial images are
projected onto the eigenspace spanned by the leading ortonormal eigenvectors,
those of higher eigenvalue, from the sample covariance matrix of the training
images. Once the set of vectors has been centered, the sample covariance matrix
is calculated, resulting a matrix of dimension h · w × h · w. It is widely known
that if N � h ·w, there is no need to obtain the eigenvalue decomposition of this
matrix, because only N eigenvectors will have a non zero associated eigenvalue
[15]. The obtention of these eigenvectors only requires the decomposition of an
N × N matrix, considering as variables the images, instead of the pixels, and
therefore considering pixels as individuals.

Once the first d eigenvectors are selected and the proportion of the retained
variance fixed (Fig. 1),

∑d
1 λi/

∑N
1 λi, being λ1 > λ2 > · · · > λN the eigenvalues,

a projection matrix A is formed with h · w rows and d columns, one for each
eigenvector. Then a feature vector Yd×1 is obtained as a projection of each image
Ih·w×1, considered as a 1D vector, onto the new eigenspace.



Spatial Approach to Pose Variations in Face Verification 353

2.2 Linear Discriminant Analysis

The previous method maximizes the total scatter retained by the fixed dimen-
sion. Information provided by the labels of the set of images, I1, I2, . . . , IN , is
not used. Linear Discriminant Analysis shapes the scatter in order to make it
more reliable for classification. Traditional Linear Discriminant Analysis uses
this information to maximize between-class scatter whereas within-class scatter
is minimized simplifying the classification process and focusing the problem in
a more reliable way.

As images are transformed into a 1D vector, the method faces the difficulty
that the within-class scatter matrix, of dimension h·w×h·w, is always singular as
the number of images N of the set is usually much lower than the number of pixels
in an image. An initial projection using PCA is done to a lower dimensional space
so that the within-scatter matrix is non singular. Then applying the standard
Fisher Linear Discriminant Analysis, the dimension is finally reduced [16].

2.3 Two-Dimensional Principal Component Analysis

The consideration of images Ih×w as 1D vectors instead as 2D structures is not
the right approach to retain spatial information. Pixels are correlated to their
neighbours and the transformation of images into vectors produces a loss of
information preserving the dimensionality. On the contrary, the main objective of
these methods is the reduction of dimensionality and the least loss of information
as possible.

The idea recently presented as a variation of traditional PCA, is to project
an image Ih×w onto XPCA by the following transformation [11,12],

Yh×1 = Ih×w · XPCA
w×1 . (1)

As result, a h dimensional projected vector Y , known as projected feature vector
of image I, is obtained. The total covariance matrix SX over the set of projected
feature vectors of training images I1, I2, . . . , IN is considered. The mean of all
the projected vectors, Y = I · XPCA, being I the mean image of the training
set, is taken into account.

SX = 1
N

∑N
i=1(Yi − Y )(Yi − Y )T

= 1
N

∑N
i=1[(Ii − I)X ][(Ii − I)X ]T

(2)

The maximization of the total scatter of projections is chosen as the criterion
to select the vector XPCA. The total scatter of the projected samples is char-
acterized by the trace of the covariance matrix of the projected feature vectors.
Applying the criterion to (2) the following expression is obtained,

J(X) = tr(SX) = XT [
1
N

N∑

i=1

(Ii − I)T (Ii − I)]X. (3)
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What is known as image covariance matrix S defined as a w × w nonnegative
matrix can be directly evaluated using the training samples,

S =
1
N

N∑

i=1

(Ii − I)T (Ii − I)]. (4)

The optimal projection axis XPCA is the unitary vector that maximizes (3),
which corresponds to the eigenvector of S of largest associated eigenvalue.

2.4 Two-Dimensional Linear Discriminant Analysis

The idea presented as 2DPCA, has been upgraded to consider the class infor-
mation [13,14]. Suppose there are L known pattern clases having M samples for
each class, N = L ·M . The idea is to project each image as in (1), but to obtain
XLDA with the information provided by the classes. The covariance over the set
of images can be decomposed into between-class and within-class. The mean of
projected vectors as in 2DPCA as well as the mean of projected vectors of the
same class Y j = Ij · XLDA, being Ij the mean image of the class j = 1, . . . , L,
are taken into account.

SXB =
∑L

j=1 M(Y j − Y )(Y j − Y )T

=
∑L

j=1 M [(Ij − I)X ][(Ij − I)X ]T
(5)

SXW =
∑L

j=1
∑M

i=1(Y
j
i − Y j)(Y j

i − Y j)T

=
∑L

j=1
∑M

i=1[(I
j
i − Ij)X ][(Ij

i − Ij)X ]T
(6)

The objective function maximized in this case to select XLDA is considered a
class specific linear projection criterion, and can be expressed as

J(X) =
tr(SXB)
tr(SXW )

. (7)

The total between and within covariances are defined as w × w nonnegative
matrices and can be directly evaluated.

SB =
L∑

j=1

M [(Ij − I)][(Ij − I)]T ; SW =
L∑

j=1

M∑

i=1

[(Ij
i − Ij)][(Ij

i − Ij)]T (8)

Both matrices are formally identical to the corresponding traditional LDA, and
by maximizing (7) the within-class scatter is minimized whereas the between-
class scatter is maximized, giving as result the maximization of discriminating
information. The optimal projection axis XLDA is the unitary vector that maxi-
mizes (7), which corresponds to the eigenvector of SB ·S−1

W , of largest associated
eigenvalue.
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Fig. 1. Evolution of the retained variance percentage for the dimension reduction meth-
ods. Left, PCA, for N = 800 possible dimensions. Right, 2DPCA in solid line and
2DLDA in dashed line, for w = 130 possible dimensions.

3 Projection and Reconstruction

As in traditional PCA, a proportion of retained variance is fixed in 2DPCA
and 2DLDA (Fig. 1),

∑d
1 λi/

∑w
1 λi, where λ1 > λ2 > · · · > λw are the eigen-

values and X1, X2, . . . , Xd are the eigenvectors corresponding to the d largest
eigenvalues.

Once d is fixed, X1, X2, . . . , Xd are the ortonormal axes used to perform the
feature extraction. Let V = [Y1, Y2, . . . , Yd] and U = [X1, X2, . . . , Xd], then

Vh×d = Ih×w · Uw×d. (9)

A set of projected vectors, Y1, Y2, . . . , Yd, are obtained for both methods. Each
projection over an optimal projection vector is a vector, instead of a scalar as in
traditional PCA. A feature matrix Vh×d for each considered dimension reduction
method is produced, containing either the most amount of variance, or the most
discriminating features of image I.

3.1 Image Reconstruction

In this dimension reduction methods, a reconstruction of the images from the
features is possible. An approximation of the original image with the retained
information determined by d is obtained.

Ĩh·w×1 = Ah·w×d · Yd×1 PCA image reconstruction.
Ĩh×w = Vh×d · UT

d×w 2DPCA or 2DLDA image reconstruction.
(10)

4 Classification with SVM

SVM is a method of learning and separating binary classes [17], it is superior in
classification performance and is a widely used technique in pattern recognition
and especially in face verification tasks [18].
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Given a set of features y1, y2, . . . , yN where yi ∈ R
n, and each feature vector

associated to a corresponding label l1, l2, . . . , lN where li ∈ {−1, +1}, the aim
of a SVM is to separate the class label of each feature vector by forming a
hyperplane

(ω · y) + b = 0, ω ∈ R
n, b ∈ R. (11)

The optimal separating hyperplane is determined by giving the largest margin
of separation between different classes. This hyperplane is obtained through
a minimization process subjected to certain constrains. Theoretical work has
solved the existing difficulties of using SVM in practical application [19].

As SVM is a binary classifier, a one vs. all scheme is used. For each class,
each subject, a binary classifier is generated with positive label associated to
feature vectors that correspond to the class, and negative label associated to all
the other classes.

4.1 Facial Verification Using SVM

In our experiments a group of images from every subject is selected as the train-
ing set and a disjoint group of images is selected as the test set. The training set is
used in the feature extraction process through PCA, 2DPCA and 2DLDA. Then,
the training images are projected onto the new ortonormal axes and the feature
vector (PCA), or vectors (2DPCA,2DLDA), are obtained. For each subject the
required SVMs are trained.

Several strategies have been used to train and combine the SVMs. When
training and classifying PCA features, each image generates one feature vector
Yd×1 and one SVM is trained for each subject, with its feature vectors labelled
as +1 and all the other feature vectors as −1.

On the other hand, for feature vectors obtained from 2DPCA and 2DLDA,
each image generates a set of projected vectors, Vh×d = [Y1, Y2, . . . , Yd], and
three different strategies have been considered. First strategy generates a unique
feature vector through a concatenation of the d projected vectors, then one SMV
is trained for each subject as in PCA. The second and third approaches consider
the d projected vectors and consequently for each subject d SVMs are trained,
one for each feature vector. These d outputs are then combined to produce a
final classification output, first through an arithmetic mean and secondly trough
a weighted mean.

Once the SVMs are trained, images from the test set are projected onto
the eigenspace obtained from the training set. The features of the test set are
classified through the SVMs to measure the performance of the generated system.

For the SVM obtained from the PCA and from the concatenation strategy
of 2DPCA and 2DLDA feature vectors, the output is compared with the known
label of every test image. However, for the ensemble of SVMs obtained from
the 2DPCA and 2DLDA feature vectors, the d outputs are combined whether
through an arithmetic or a weighted mean. Arithmetic approach combines the
d outputs through an arithmetic mean. At weighted approach, every output is
weighted with the amount of variance explained by its dimension, that means
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that each output will be taken in account proportionally to the value of the
eigenvalue associated to the corresponding eigenvector: λi/

∑d
j=1 λj is the weight

for the i−SVM, i = 1, 2, . . . , d.
To measure the system performance a cross validation procedure is carried

out. Results are then described by using Receiver Operating Curve, ROC curve,
as there are four possible experiment outcomes: true positive (TP), true negative
(TN), false positive (FP) and false negative (FN). The system threshold can then
be adjusted to more or less sensitiveness, but in order to achieve fewer errors
new and better methods, like 2DPCA and 2DLDA, are required.

5 Design of Experiment

The Face Recognition and Artificial Vision1 group (FRAV) at the Universidad
Rey Juan Carlos, has collected a quite complete set of facial images for 109

Fig. 2. a) One of the original frontal images in the FRAV2D database. b) Automatically
selected window containing the facial expression of the subject in equalized gray scale.
c) Sample of a pose variation face, rotated 15◦, used to evaluate the performance of the
verification. d) From left to right, reconstructed images (10), for d = 10, 50, 90, 150, 170,
from PCA projection. e) and f) From left to right, reconstructed images (10), for
d = 1, 2, 3, 4, 5, from 2DPCA and 2DLDA projections respectively.

1 http://frav.escet.urjc.es
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subjects. All the images have been taken under controlled conditions of pose
and illumination. A partial group of this database is freely available for research
purposes.

The images are colored and of size 240 × 320 pixels with homogeneous back-
ground color. A window of size 140× 130 pixels containing the most meaningful
part of the face, has been automatically selected in every image and stored in
equalized gray scale. That is the information that will be analyzed through the
dimension reduction and classification methods (Fig. 2).

The purpose of the following experiments is to confront the robustness to pose
variations of the traditional PCA method and classifying strategies to the new
proposed 2DPCA and 2DLDA methods in the task of face verification through
SVM. Each experiment has been performed for 100 randomly chosen subjects
from the whole FRAV2D. In all the experiments, the train set for the extraction
of the feature vectors and for the classifiers training is formed by eight frontal
images of each subject. Then, the classifiers have been tested over four 15◦

rotated images to measure the performance of the system at pose variations.
Different tests for the reduced dimension of the projections with different

values have been carried out. Results for the best performance of each method
are presented as ROC curves (Fig. 3), showing the compared performance of the
verification process using PCA, 2DPCA and 2DLDA. True positive rate (TP),
that is the proportion of correct classifications to positive verification problems,
and true negative rate (TN), that is the proportion of correct classifications to
negative verification problems, are plotted. Besides, the equal error rate (EER),
that is the value for which false positive rate (FP) is equal to false negative rate
(FN), is presented for each experiment that has been undertaken (Fig. 4).

Fig. 3. ROC curves for the best performance of each dimension reduction method,
with TP rate in abscises and TN rate in ordinates. The performance of PCA with
d = 170 in dotted line, 2DLDA with d = 2 under concatenated strategy in dashed line
and 2DPCA with d = 1 in solid line.
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Fig. 4. Top, Equal Error Rate for PCA dimension reduction method for different values
of d. Best performance is done for d = 170, EER = 21.33%. Center, Equal Error Rate
for 2DPCA dimension reduction method for different values of d and the three SVM
strategies, concatenated in solid line, arithmetic mean in dotted line and weighted mean
in dashed line. Best performance is done for d = 1, EER = 12.89%. Bottom, Equal
Error Rate for 2DLDA dimension reduction method for different values of d, as in the
previous figure the three strategies have been considered. Best performance is done for
d = 2, EER = 15.19% with concatenated strategy.
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6 Conclusions

Best results are achieved for the spatial reduction method 2DPCA, as presented
at the the ROC curves and the EER values for each method (Fig. 3, 4). Im-
provements are over 8% with respect to PCA.

Both spatial methods improve the performance of traditional PCA but seri-
ous differences appear. 2DPCA reaches its maximum accuracy at d = 1, while
2DLDA needs d = 2 to reach its best performance, both being quite low from
w = 130 possible dimensions. PCA reaches its best performance at d = 170
from N = 800 possible dimension. None of the three classifying strategies are
able to improve the results while increasing the dimension at 2DPCA. 2DLDA
best performance is reached with concatenation strategy, though weighted mean
strategy, as in 2DPCA, seems more robust to the increase of dimension. Spatial
methods lead to an eigenvector decomposition of matrices with sizes, w × w,
much smaller than PCA, N × N .

It is clear that the spatial dimension reduction methods are more reliable
for the purpose of face verification, specially for pose variations (Fig. 2), but
deeper work has to be done to use all the information provided by the dimension
reduction methods in order to achieve a more accurate verification.
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facial feature location with spin images. In Proceedings of the 9th International
Association for Pattern Recognition Conference on Machine Vision Applications.
(2005) 418–421.



Spatial Approach to Pose Variations in Face Verification 361

7. Lu, X., Colbry, D. and Jain, A. K.: Three-Dimensional Model Based Face Recog-
nition. In Proceedings of International Conference on Pattern Recognition. (2004)
362–366.

8. Pang, S., Kim, D. and Bang, S. Y.: Membership authentication in the dynamic
group by face classification using SVM ensemble. Pattern Recognition Letters 24
(2003) 215–225.

9. Kim, T., Kim, H., Hwang, W. and Kittler, J.: Independent Component Analysis
in a local facial residue space for face recognition. Pattern Recognition. 37 (2004)
1873–1885.

10. Cao L.J. and Chong W.K.: Feature extraction in support vector machine: a com-
parsion of PCA, KPCA and ICA. Proceedings of the International Conference on
Neural Information Processing. Vol. 2 (2002) 1001–1005.

11. Yang, J. and Yang, J.: From image vector to matrix: a straightforward image
projection technique–IMPCA vs. PCA. Pattern Recognition 35 (2002) 1997–1999.

12. Yang, J., Zhang, D., Frangi and F., Yang, J.: Two-Dimmensional PCA: A new
approach to apperance-based face representation and recognition. IEEE Transacc-
tions on Pattern Recognition and Machine Intelligence. 26 (2004) 131–137.

13. Li, M., Yuan, B.Z.: A novel statistical linear discriminant analysis for image matrix:
two-dimensional fisherfaces. Proceedings of the International Conference on Signal
Processing. (2004) 1419–1422.

14. Chen S., Zhu Y., Zhang D. and Yang J.: Feature extraction approaches based on
matrix pattern: MatPCA and MatFLDA. Pattern Recognition Letters. In press.

15. Turk, M. and Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neu-
rosicience. 3 (1991) 71–86.

16. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces:
recognition using class specific linear projection. IEEE Transactions on Pattern
Analysis and Machine Intelligence 19 (1997) 711–720.

17. Cortes, C. and Vapnik, V.: Support vector network. Machine Learning. 20 (1995)
273–297.

18. Fortuna, J. and Capson, D.: Improved support vector classification using PCA and
ICA feature space modiffication. Pattern Recognition 37 (2004) 1117–1129

19. Joachims, T.: Making large scale support vector machine learning practical.
In: Advances in Kernel Methods: Support Vector Machines. MIT Press, Cam-
bridge, MA.


	Introduction
	Feature Extraction
	Principal Component Analysis
	Linear Discriminant Analysis
	Two-Dimensional Principal Component Analysis
	Two-Dimensional Linear Discriminant Analysis

	Projection and Reconstruction
	Image Reconstruction

	Classification with SVM
	Facial Verification Using SVM

	Design of Experiment
	Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




