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ABSTRACT 

A multimodal face verification process is presented for 
standard 2D color images, 2.5D range images and 3D 
meshes. A normalization in orientation and position is 
essential for 2.5D and 3D images to obtain a corrected 
frontal image. This is achieved  using the spin images of the 
nose tip and both eyes, which feed an SVM classifier. First, 
a traditional Principal Component Analysis followed by an 
SVM classifier are applied to both 2D and 2.5D images. 
Second, an Iterative Closest Point algorithm is used to 
match 3D meshes. In all cases, the equal error rate is 
computed for different kinds of images in the training and 
test phases. In general, 2.5D range images show the best 
results (0.1% EER for frontal images). A special 
improvement in success rate for turned faces has been 
obtained for normalized 2.5D and 3D images compared to 
standard 2D images. 

Index Terms— Biometrics, Pattern Recognition, Image 
processing. 

1. INTRODUCTION 

During the last years face biometrics for 2D images has 
experienced an important emergence, in part due to a 
demand increase of applications on security and police 
purposes. There exists a long tradition of research of 2D 
face recognition [1]. 

Not until recently have these algorithms been applied to 
3D data, in part due to the high cost of 3D digitizers and 
also due to the high load of work needed to handle these 
data. The independence from the lighting conditions, as well 
as the study of a 3D object such as the human face by means 
of 3D techniques are some of the advantages of these 
methods respect of 2D cases [2, 3, 4]. 

The remainder of this paper is organized as follows. In 
section 2 a short literature review is presented. In section 3 
we describe our multimodal face database. In section 4 the 
face normalization process is explained. In section 5 the 
verification process for 2D, 2.5D and 3D data can be found. 
In section 6 we give our results. Finally conclusions are to 
be found in section 7. 

2. PREVIOUS WORK 

Several kinds of methods have been applied for 3D face 
recognition. On the one hand, methods based on local 
characteristics take advantage of geometrical features of the 
3D mesh, where they measure principal curvatures, saddle 
points and valley lines [5].  

On the other hand, methods based on global 
characteristics have also been used, from properties of the 
3D surface, such as intersection with diverse planes and the 
study of profiles [6], to the face representation with 
Gaussian images [7]. Some others have compared PCA [8] 
with other methods: in [9] with ICA, in [10] with 
Haussdorff distance within surfaces. Mavridis et al. [11] 
computed 3D eigenfaces, while Chang et al. [12] compared 
eigenfaces for range images and texture images for face 
recognition. 

Some methods for 3D face recognition are based on the 
comparison with a template. For example, in [13] ICP is 
used, as in this work. Others have proposed 3D deformable 
models [14] or texture information with ASM models [15]. 

3. FRAV3D: A MULTIMODAL FACE DATABASE 

We have used a multimodal database, the so-called 
FRAV3D. It has been acquired during ten months with 105 
volunteers. The totality of the subjects are young adults (18 
– 35 years old), Caucasian, with a certain bias towards men 
(81 males/24 women). Some parts of the database are 
available from its web page [16]. 

A scanner MINOLTA VIVID-700 red laser light-stripe 
triangulation range finder was used under controlled indoor 
conditions. As a result, both a 3D mesh with up to 4000 
points and 7500 triangles and a classical 2D color image 
were produced. The subjects were asked to sit opposite the 
scanner, with a dark plain background behind them. No 
hats, scarves or glasses were allowed. For security reasons, 
all the participants kept their eyes closed during the 
acquisition. All scans were acquired using a strict protocol 
for standardizing reasons. Each shot differed from the 
previous one in only one acquisition parameter, which 
included turns, presence or absence of gestures and changes 
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in illumination. In Figure 1 several examples of the 
FRAV3D face database are shown. 

Figure 1 – Sample of 3D meshes from FRAV3D database. 
From left to right: frontal face, X-axis turn, Y-axis turn, Z-
axis turn, face with gesture. 

4. AUTOMATIC FEATURE LOCATION AND 

NORMALIZATION 

4.1. Introduction to Spin Images  

To find automatically face features in our 3D meshes, 
such as nose and eyes, a global registration technique called 
spin images has been used [17], which can be understood as 
spatial histograms with respect to an origin “oriented” point 
p. This refers to a reference frame defined as the tangent 
plane P containing p and the unitary vector n perpendicular 
to this plane through p.

There is a dimension reduction from the 3D coordinates 
(x, y, z) to a 2D system ( , ) which represent the relative 
distance between the oriented point p and the other points. 
The spin image transformation S0 is defined as follows: 
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where  is the distance from a point x to the straight 
line L parallel to n and containing p, while  is the distance 
from x to the plane P (Figure 2). 

4.2. Localization of nose tip 

Spin images are dependent on the point selected as origin. 
As all human faces look alike in shape and size, this implies 
that all spin images computed for example for the tip nose 
will also be similar, even for different people. 

We have trained an SVM classifier [18] to detect nose 
tips. In an iterative process, the most jutting point of the 3D 
mesh model is identified and classified by means of its spin 
image until the genuine nose tip is localized. 

This method is very accurate and could be also used to 
search the eyes or other face features. However, due to the 
associated computational effort, a more intelligent algorithm 
has to be applied to lighten the load of work. A process 
divided in two steps is necessary to assure an efficient and 
fast localization of both eyes. 

4.3. Preprocess for Eyes Localization 

Once the nose tip has been located, a coarse search of the 
eyes is performed first only in a reduced area around the 

nose. In this candidate region, the discrete mean curvature is 
computed at each point [19]. The eyes and the nose are 
located at the positions with highest curvature. 

Figure 2 – Parameters of Johnson’s spin image [17]. 

Using a clustering technique based on Euclidean 
distance, the selected points in the previous step are 
allocated to three groups or clusters: left eye, right eye and 
nose. 

4.4. Detection of the eyes  

A SVM classifier has been trained in order to detect each 
eye inside corner. For each cluster the deepest points are 
selected (those with lowest Z coordinate). The 
corresponding spin image is computed and fed into the 
classifier. If the output of SVM is negative, a new candidate 
point is selected. The process is repeated until the lachrymal 
contained in that cluster has been found. 

4.5. Normalization 

The face has to be normalized in orientation, this is, the 
effects produced by any turn with respect to the X, Y or Z 
axes have to be corrected, in order to obtain a frontal view. 
The better the normalization, the better verification rates are 
obtained later. This process can be divided in several steps:  

First, the face orientation is corrected for Y axis, by 
computing the adequate angle to level the depth of both 
eyes, so that the face does not seem to be in profile.  

Second, the face orientation is corrected for Z axis. This 
is harder to do, because the eye detection algorithm is 
sometimes not accurate enough. A linear fit for the points 
between the nose tip and the middle point between the 
brows has been computed. When this correction is applied, 
the nose will seem to be vertical.  

Finally, the face orientation is corrected for X axis. This 
is done by computing the straight line that best fits the face 
in the YZ plane. When this correction is applied, the face 
will not look upward nor downward, but directly forward. 

5. VERIFICATION PROCESS 

We have performed a face verification process using three 
types of data: standard 2D images, range or depth images 
(also known as 2.5D) and 3D mesh models. 

2062



Table 1 – Images used for training and tests per person 
No. of test No. of training 

images (type) 
No. of testing 
images (type) 

1 3 (frontal) 1 (frontal) 
2 4 (frontal) 1 (smiling) 
3 4 (frontal) 1 (open mouth) 
4 4 (frontal) 2 (illumination) 
5 4 (frontal) 2 (5º Y-turn) 
6 4 (frontal) 1 (Z-turn) 
7 4 (frontal) 2 (X-turn) 
8 4 (frontal) 2 (25º Y-turn) 
9 4 (frontal) 1 (Z-turn) 
10 4 (frontal) 

2 (illumination) 
2 (frontal) 

11 3 (frontal) 
1 (5º Y-turn) 

1 (frontal) 
1 (5º Y-turn) 

12 3 (frontal) 
1 (5º Y-turn) 

1 (illumination) 

1 (frontal) 
1 (5º Y-turn) 

1 (illumination) 
13 3 (frontal) 

1 (5º Y-turn) 
1 (illumination) 

1 (frontal) 
1 (5º Y-turn) 

1 (illumination) 
1 (gesture) 

14 4 (frontal) 2 (gestures) 
15 2 (frontal) 2 (frontal) 

5.1. Verification using 2D and 2.5D Data 

Range data have been computed using the method proposed 
in [20]. For each pixel a gray level is assigned according to 
the distance to the laser. In order to optimize this range, an 
exponential equalization has been applied. Holes because 
lost points are interpolated in the image. 

The verification process used here, both for 2D and 
2.5D images, makes use of a Principal Component Analysis 
(PCA) [8], followed by an SVM classifier [18]. First of all, 
the face contained in range image is searched by means of a 
template. It is then cropped in order to reduce its size to 
130 140 pixels. This procedure was applied for all the 
subjects in the database, so a traditional covariance matrix is 
constructed and the eigenfaces are computed.  

We only retain the 150 most significant eigenvalues. 
With this dimension reduction, every image is projected into 
the eigenfaces framework. With these projections, an SVM 
classifier is trained for each person. The SVM output will be 
used to verify the identity of each subject. 

5.2. Verification using 3D Data 

For the 3D mesh models, the usual Iterative Closest Point 
(ICP) algorithm has been used [21, 22]. In this situation, 
two 3D clouds of points have to be fitted. One of them is the 
model and is fixed. The other one is the scene and has to be 
rotated and moved adequately so that it adapts to the model 
with minimal error.  

Table 2 – EER computed for all the tests 
No. of test  2D 3D 2.5D 

1 2.9 4.9 0.1 
2 5.1 10.3 4.6 
3 12.6 12.6 12.6 
4 8.7 3.4 1.0 
5 14.6 4.4 1.0 
6 33.9 7.4 2.2 
7 13.3 5.3 1.9 
8 27.0 5.8 4.9 
9 41.1 7.4 3.7 
10 1.9 3.7 0.5 
11 4.9 5.3 0.5 
12 4.2 4.2 0.6 
13 4.1 6.7 1.7 
14 9.2 11.8 10.3 
15 1.9 3.7 0.6 

By means of an iterative process, the scene is rotated 
and moved until the fitting error is lower than a certain 
threshold. The value of this error will be used in the 
subsequent verification process. The lower the error is, the 
better coincidence between the model and the scene and the 
higher the probability that they belong to the same person. 

6. RESULTS AND DISCUSSION

Fifteen tests have been carried out. For 2D and 2.5D an 
SVM classifier has been trained with a set of images (Table 
1) and tested with a disjoint set of images. For 3D only 
frontal meshes have been considered for training and tests. 

To verify the reliability of this process, a Receiver 
Operating Characteristic (ROC) has been computed. The 
error at which the False Acceptance Rate equals the False 
Rejection Rate is called Equal Error Rate (EER).  

In Table 2 we show the EER for the 15 types of tests 
for 2D, 2.5D and 3D data. In general 2.5D data produce 
better results compared with only 2D data. The only 
exceptions can be obtained in the tests 3 and 14, which 
make use of images with gestures. It is specially remarkable 
that tests 5, 6, 7, 8 and 9, which include images with turns, 
show an important decrease for the EER from around 40% 
to barely 5% in test 9. This improvement is due to the 
correction of orientation for 2.5D data, which allows to 
remove the influence of turns of the face in any direction. 
Obviously in standard 2D images this correction cannot be 
made. 

Comparing the results obtained for 3D data with ICP, 
no improvement is obtained. In general a lower EER is 
obtained for 3D data with respect to 2D, but greater than 
those of 2.5D. Again for tests 5, 6, 7, 8 and 9, where 
normalized faces are used, the 3D algorithm yields much 
better results than in 2D.  

For frontal images (test 1), the three methods show 
similar good results, in this order: 2.5D (0.1% EER), 2D 
(3% EER) and finally 3D (5% EER). 
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7. CONCLUSIONS 

A study of face recognition for three kinds of images (2D 
color images, 2.5D range data and 3D meshes) has been 
carried out for a 105 people multimodal face database 
(FRAV3D). A traditional PCA followed by an SVM 
classifier has been applied for both 2D and 2.5D images. As 
well, an ICP algorithm has been used to compare 3D 
meshes. A normalization in face orientation has been 
applied for both 2.5D and 3D images, so that in these cases, 
the face looks frontal after the correction.  

For frontal images, the best performance is obtained for 
range images (99.9% success rate). Standard 2D color 
images yield a 97.1% rate and 3D images hit only 95.1%. 

Faces showing a smile have better results than faces 
with the mouth open, as in this case the geometry of the face 
is not affected so much. 2.5D images have the better results. 

Changes of illumination affect mainly 2D data. The 
performance of 3D images remains the same, and 2.5D also 
behaves well, with a lower success rate than for frontal 
images. Turned faces decrease enormously the performance 
for 2D images. Normalized faces that for 2.5D and 3D 
images show similar results to frontal faces. 

For tests 10 to 14, where several kinds of images have 
been used in the training phase, an improvement in 
performance is achieved for 2D and 2.5D images, as the 
classifier is prepared for more different conditions. As ICP 
algorithm has no training phase, we obtain similar results to 
other cases. 

In general, better results are obtained for 2.5D range 
images, where the normalization in position and orientation 
is essential. As well, we have to point out that our 2D 
classifier yields better results compared to 3D, although the 
geometrical information contained in 2.5D images shows to 
be more robust and powerful than 2D texture only. 
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